

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

ENQ - 2021.2 - Gabarito

Questão 01 [1,25 ::: (a)=0,50; (b)=0,75]

- (a) Prove que $10^n 1$ é divisível por 9, para todo $n \ge 1$.
- (b) Use o item (a) para provar o seguinte critério de divisibilidade por 9: "Um número natural é divisível por 9 se, e somente se, a soma dos seus algarismos for divisível por 9".

Observação: Lembre-se que todo número natural a pode ser representado no sistema decimal por

$$a = a_m \cdot 10^m + \dots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$$
, em que $m \in \mathbb{N}$ e $a_m \neq 0$.

Solução

- (a) O resultado vale será provado por indução em n. Para n=1, pois $10^1-1=9$ é divisível por 9. Suponha que o resultado vale para $k\geqslant 1$, ou seja, que existe ℓ inteiro tal que $10^k-1=9\ell$. Assim, $10^k=9\ell+1$. Para k+1 temos que $10^{k+1}-1=10\cdot 10^k-1=10\cdot (9\ell+1)-1=9\cdot (10\ell+1)$ e, assim, segue o resultado pelo princípio de indução matemática.
- (b) Sejam $a = a_m \cdot 10^m + \dots + a_1 \cdot 10 + a_0$ e $S = a_m + \dots + a_1 + a_0$ a soma dos algarismos de a. Note que $a - S = a - (a_m + \dots + a_1 + a_0) = a_m \cdot 10^m + \dots + a_1 \cdot 10 + a_0 - (a_m + \dots + a_1 + a_0) = a_m \cdot (10^m - 1) + \dots + a_1 \cdot (10^1 - 1)$.

Pelo item (a), sabemos que que $10^k - 1$ é múltiplo de 9, para todo $k \ge 1$. Daí, concluímos que a - S = 9q. Desta igualdade segue o critério de divisibilidade por 9:

Se a = 9r, então S = 9r - 9q = 9(r - q). Reciprocamente, se S = 9p, então a = 9p + 9q = 9(p + q).

Pauta de Correção:

- (a) Fazer o caso n = 1 e/ou escrever/citar a hipótese de indução. [0,25]
 - Fazer o passo indutivo e concluir o resultado. [0,25]
- (b) Desenvolver a diferença a S. [0,25]
 - Usar o item (a) para concluir que a-S é múltiplo de 9. [0,25]
 - Mostrar que o fato anterior implica o critério pedido. [0,25]

Solução Alternativa

- (a) Sabemos que $10 \equiv 1 \mod 9$. Logo, para qualquer $n \geqslant 1$, temos $10^n \equiv 1 \mod 9$, ou seja, $10^n 1$ é divisível por 9.
- (b) Seja $a = a_m \cdot 10^m + \cdots + a_1 \cdot 10 + a_0$. Para cada k = 0, ..., m temos

$$10^k \equiv 1 \mod 9 \iff a_k \cdot 10^k \equiv a_k \mod 9$$

Somando as congruências acima para todo k = 0, ..., m:

$$a_m \cdot 10^m + \dots + a_1 \cdot 10 + a_0 \equiv a_m + \dots + a_1 + a_0 \mod 9$$

Ou seja,

$$a \equiv a_m + \dots + a_1 + a_0 \mod 9$$

o que é equivalente a dizer que a e $a_m + \cdots + a_0$ deixam o mesmo resto na divisão por 9. Daí, um deles é múltiplo de 9 (congruente a 0 mod 9) se, e somente se, ou outro for.

- (a) Usar que $10 \equiv 1 \mod 9$ para concluir o item. [0,5]
- (b) Usar o item (a) e deduzir que $a_k \cdot 10^k \equiv a_k \mod 9$. [0,25]
 - Concluir que a e $a_m + \cdots + a_1 + a_0$ são congruentes módulo 9. [0,25]
 - Mostrar que o fato anterior é equivalente ao critério enunciado. [0,25]

Seja $f:(0,+\infty)\to\mathbb{R}$ uma função tal que f(xy)=f(x)+f(y) para todos $x,y\in(0,+\infty)$.

- (a) Mostre que f(1) = 0.
- (b) Mostre, por indução, que para todo a > 0 e todo $n \ge 1$ natural, tem-se $f(a^n) = nf(a)$.
- (c) Mostre que para todo a > 0 e todo $n \in \mathbb{N}$, tem-se $f(a^{-n}) = -nf(a)$.

Solução

(a)
$$f(1) = f(1 \cdot 1) = f(1) + f(1) \iff f(1) = 0.$$

(b) Para n=1, temos pela hipótese do enunciado, $f(a^1)=f(a)=1\cdot f(a)$. Suponha, agora, válido para n=k, isto é, $f(a^k)=kf(a)$ e vamos calcular para n=k+1:

$$f(a^{k+1}) = f(a^k \cdot a) = f(a^k) + f(a) = kf(a) + f(a) = (k+1)f(a).$$

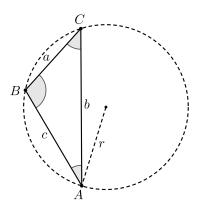
A segunda igualdade vale pela hipótese do problema e a penúltima pela hipótese de indução.

(c)
$$0 = f(1) = f(a^{0}) = f(a^{n-n}) = f(a^{n} \cdot a^{-n}) = f(a^{n}) + f(a^{-n}) = nf(a) + f(a^{-n})$$
$$\iff f(a^{-n}) = -nf(a).$$

- (a) Provar que f(1) = 0. [0,25]
- (b) Provar a base da indução. [0,25]
 - Provar o passo indutivo. [0,25]
- (c) Realizar a prova solicitada. [0,5]

Considere um triângulo ABC de lados a,b e c, conforme a figura, e seja r o raio do círculo circunscrito a este triângulo. Prove a lei dos senos:

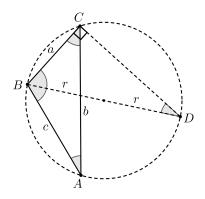
$$\frac{a}{\operatorname{sen}\hat{A}} = \frac{b}{\operatorname{sen}\hat{B}} = \frac{c}{\operatorname{sen}\hat{C}} = 2r$$



Solução

Considere o triângulo BCD, construído de tal modo que BD seja um diâmetro, conforme a figura. Evidentemente os ângulos \hat{A} e \hat{D} são congruentes, já que ambos estão inscritos na circunferência e determinam o mesmo arco. Como o triângulo BCD é reto em C, já que está inscrito em uma semicircunferência, então

$$\operatorname{sen} \hat{A} = \operatorname{sen} \hat{D} = \frac{a}{2r}.$$



Procedendo do mesmo modo com relação aos ângulos \hat{B} e \hat{C} concluímos que

$$\operatorname{sen} \hat{B} = \frac{b}{2r}$$
 e $\operatorname{sen} \hat{C} = \frac{c}{2r}$.

Isolando 2r nas três equações obtidas anteriormente chegamos a

$$\frac{a}{\operatorname{sen}\hat{A}} = \frac{b}{\operatorname{sen}\hat{B}} = \frac{c}{\operatorname{sen}\hat{C}} = 2r,$$

provando assim a lei dos senos, como era nossa intenção.

- Construir o triângulo inscrito na semicircunferência. [0, 25]
- Argumentar que ângulos inscritos que determinam o mesmo arco são congruentes. [0, 25]
- Argumentar que todo triângulo inscrito em uma semicircunferência é retângulo. [0, 25]
- Encontrar a relação $sen\,\hat{A}=\frac{a}{2r}$ ou uma de suas equivalentes para \hat{B} ou $\hat{C}.$ [0,25]
- Argumentar que o procedimento para os outros dois ângulos é análogo e finalizar a prova. [0, 25]

Sabendo que $\cos(3x) = 4\cos^3 x - 3\cos x$ e que $54^\circ + 36^\circ = 90^\circ$, calcule sen (18°).

Solução

Tomando $x = 18^{\circ}$ e usando o fato de que $\cos(54^{\circ}) = \sin(36^{\circ})$,

$$\cos(54^\circ) = 4\cos^3(18^\circ) - 3\cos(18^\circ),$$

$$sen(36^\circ) = 4\cos^3(18^\circ) - 3\cos(18^\circ).$$

como

$$sen (36^{\circ}) = 2sen (18^{\circ}) cos (18^{\circ}),$$

teremos

$$2 \operatorname{sen} (18^{\circ}) = 4 \cos^{2} (18^{\circ}) - 3.$$

Seja $y = \text{sen} (18^{\circ})$, temos então que,

$$4y^2 + 2y - 1 = 0,$$

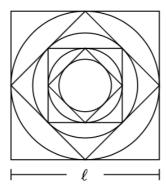
donde

$$y = \frac{\sqrt{5} - 1}{4},$$

ou seja sen
$$(18^\circ) = \frac{\sqrt{5} - 1}{4}$$
.

- Escrever que $\cos (54^{\circ}) = \sin (36^{\circ})$. [0,25]
- Concluir que sen $(36^\circ) = 4\cos^3(18^\circ) 3\cos(18^\circ)$. [0,25]
- Escrever que sen $(36^{\circ}) = 2\text{sen} (18^{\circ}) \cos (18^{\circ})$. [0,25]
- Concluir que $2 \operatorname{sen} (18^{\circ}) = 4 \cos^2 (18^{\circ}) 3$, ou equivalente. [0,25]
- Concluir que sen $(18^{\circ}) = \frac{\sqrt{5} 1}{4}$. [0,25]

Na figura abaixo, a partir de um quadrado de lado ℓ forma-se uma sequência de quadrados e círculos em que cada quadrado é formado unindo os pontos médios do quadrado imediatamente anterior e todos os círculos estão inscritos em algum quadrado. Sejam ℓ_n o lado do n-ésimo quadrado e r_n o raio do n-ésimo círculo.



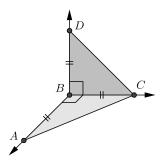
- (a) Determine a relação entre ℓ_n e r_n .
- (b) Encontre a soma P dos perímetros dos infinitos quadrados em função de ℓ .
- (c) Obtenha a soma A das áreas dos infinitos círculos em função de ℓ .

Solução

- (a) Como o n-ésimo círculo está inscrito no n-ésimo quadrado, seu diâmetro é igual ao lado desse quadrado, ou seja $\ell_n = 2r_n$.
- (b) Notando que o lado do quadrado Q_{n+1} corresponde à diagonal de um quadrado cujo lado mede $\frac{\ell_n}{2}$ concluímos que $\ell_{n+1} = \frac{\ell_n \sqrt{2}}{2}$, ou seja, uma vez que o perímetro de cada quadrado é o quádruplo de seu lado, os perímetros da sequência Q_n de quadrados formam uma PG de razão $\frac{\sqrt{2}}{2}$ cujo primeiro termo igual a 4ℓ . Logo, a soma P procurada é dada pela soma dos termos desta PG infinita, isto é, $P = \frac{4\ell}{1 \frac{\sqrt{2}}{2}} = 4\ell(2 + \sqrt{2})$.
- (c) Uma vez que, pelo item (b), $\ell_{n+1} = \frac{\ell_n \sqrt{2}}{2}$, concluímos, pelo item (a), que $r_{n+1} = \frac{r_n \sqrt{2}}{2}$. Como a razão entre as áreas de dois círculos é dada pelo quadrado da razão entre seus raios, concluímos que as áreas da sequência de círculos C_n é também uma PG cujo primeiro termo vale $\pi r_1^2 = \frac{\pi l^2}{4}$ e cuja razão é igual a $\frac{1}{2}$. Dessa forma, podemos novamente utilizar a fórmula da soma da PG infinita para concluir que a soma procurada é dada por $A = \frac{\pi l^2}{2}$.

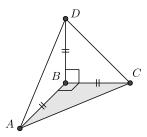
- (a) Apresentar a relação correta. [0,25]
- (b) Observar que a sequência dos perímetros formava uma PG infinita, identificando a razão e o primeiro termo. [0,25]
 - Calcular corretamente a soma da PG infinita. [0,25]
- (c) Observar que a sequência das áreas formava uma PG infinita, identificando a razão e o primeiro termo. [0,25]
 - Calcular corretamente a soma da PG infinita. [0,25]

Dois triângulos ABC e BCD são isósceles, retângulos em B e contidos em planos perpendiculares, conforme figura. Determine o volume do sólido ABCD em função da medida a do segmento AB.



Solução

O sólido ABCD é uma pirâmide, conforme figura abaixo.



As retas BA e BD são perpendiculares à reta BC de interseção entre os planos, assim, o ângulo $A\hat{B}D$ entre essas retas define o ângulo entre os planos. Como é dito que os planos são perpendiculares, temos então que $A\hat{B}D = 90^{\circ}$. Com isso, BD é perpendicular ao plano da base ABC.

Tomando ABC como base da pirâmide, a altura da pirâmide relativa à base ABC será o segmento BD.

Observe que o triângulo ABC é retângulo isósceles, logo $\overline{BC} = \overline{AB} = a$ e a área do triângulo ABC é dada por

$$S = \frac{a \cdot a}{2} = \frac{a^2}{2}.$$

Como BD é congruente a AB, temos também $\overline{BD}=a$, logo a altura da pirâmide relativa à face ABC é a. Assim, o volume da pirâmide ABCD é dado por

$$V = \frac{1}{3}S \cdot h = \frac{1}{3} \cdot \frac{a^2}{2} \cdot a = \frac{a^3}{6}.$$

- $\bullet\,$ Considerar (escrever ou esboçar) a base ABC e a altura BD (ou outra configuração equivalente) [0,25]
- Justificar o fato de BD ser altura relativa à base ABC [0,25]
- Calcular a área da base [0,5]
- Obter o volume final correto [0,25]

Um dado não viciado é lançado duas vezes. Neste contexto, em cada item abaixo, calcule a probabilidade de:

- (a) a soma dos números obtidos ser um número ímpar.
- (b) obter dois números menores do que 3.
- (c) obter dois números pares.

Solução

O espaço amostral é formado por todos os pares de resultados possíveis. Como em cada lançamento há 6 possibilidades, o número de casos possíveis é $6 \cdot 6 = 36$, todos com a mesma possibilidade de ocorrência.

- (a) No primeiro lançamento temos 6 possibilidades. Para cada escolha, como a paridade no segundo lançamento tem que ser diferente, temos 3 possibilidades, logo 18 casos favoráveis. Portanto, a probabilidade, neste caso, é igual a $\frac{18}{36} = \frac{1}{2}$.
- (b) No primeiro lançamento temos 2 possibilidades e no segundo também 2 possibilidades, logo 4 casos favoráveis. Portanto, a probabilidade, neste caso, é igual a $\frac{4}{36} = \frac{1}{9}$.
- (c) No primeiro lançamento temos 3 possibilidades e no segundo também 3 possibilidades, logo 9 casos favoráveis. Portanto, a probabilidade, neste caso, é igual a $\frac{9}{36} = \frac{1}{4} = \frac{25}{100}$.

Pauta de Correção:

- Responder o item (a). [0,5]
- Responder o item (b). [0,5]
- Responder o item (c). [0,25]

Questão 08 [1,25]

Determine o resto da divisão por 19 do número

$$S = 1^{18} + 2^{18} + 3^{18} + \dots + 95^{18}$$
.

Solução

Pelo Pequeno Teorema de Fermat tem-se, para todo inteiro a tal que (a, 19) = 1, que

$$a^{18} \equiv 1 \mod 19$$

Por outro lado, se $(a, 19) \neq 1$ então 19|a e neste caso

$$a^{18} \equiv 0 \mod 19$$

Como temos cinco múltiplos de 19 entre 1 e 95: $1 \cdot 19, 2 \cdot 19, 3 \cdot 19, 4 \cdot 19$ e $5 \cdot 19 = 95$, concluimos que

$$S \equiv 1 + 1 + \dots + 1 = 90 \mod 19$$

Portanto,

$$S \equiv 14 \mod 19$$

e o resto é igual a 14.

- Usar o Pequeno Teorema de Fermat, no caso (a, 19) = 1. [0, 25]
- Observar o caso em que 19|a. [0, 25]
- Determinar a quantidade de múltiplos de 19.[0, 25]
- Concluir que $S \equiv 90 \mod 19$. [0, 25]
- Determinar o resto. [0, 25]