MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

ENQ - 2022.1 - Gabarito

Questão 01 [1,25 ::: (a)=0,25; (b)=0,25; (c)=0,75]

As equações $x^4 + bx^2 + c = 0$ e $x^3 + x^2 - 37x + 35 = 0$ possuem duas raízes distintas comuns.

- (a) Determine as raízes da segunda equação.
- (b) Mostre que se α é raiz da primeira equação então $-\alpha$ também o é.
- (c) Determine todos os possíveis valores de b e c na primeira equação.

Solução

(a) Na segunda equação, começamos observando que uma das raízes é igual à 1:

$$1+1-37+35=0$$

Escrevendo $x^3 + x^2 - 37x + 35 = (x - 1)(x^2 + 2x - 35)$ tem-se que

$$x^{3} + x^{2} - 37x + 35 = 0 \iff x = 1 \text{ ou } x^{2} + 2x - 35 = 0$$

Portanto, as raízes são x = 1, 5, -7.

(b) Suponha α raiz da primeira equação, isto é, $\alpha^4 + b\alpha^2 + c = 0$.

Como $(-\alpha)^4 + b(-\alpha)^2 + c = \alpha^4 + b\alpha^2 + c = 0$, concluímos que $-\alpha$ também é uma raiz.

- (c) Como as equações possuem duas raízes comuns, vamos analisar as três possibilidades:
 - (1) As raízes comuns são 1 e 5. Neste caso, usando o item (b) as raízes da primeira equação são: 1, -1, 5, -5 e assim

$$x^4 + bx^2 + c = 0 = (x - 1)(x + 1)(x - 5)(x + 5) = (x^2 - 1)(x^2 - 25) = x^4 - 26x^2 + 25$$

Portanto, b = -26 e c = 25.

(2) As raízes comuns são $1 \ {\rm e} \ -7$. Neste caso,

$$x^4 + bx^2 + c = 0 = (x - 1)(x + 1)(x - 7)(x + 7) = (x^2 - 1)(x^2 - 49) = x^4 - 50x^2 + 49$$

Portanto, b = -50 e c = 49.

(3) As raízes comuns são 5 e -7. Neste caso,

$$x^4 + bx^2 + c = 0 = (x - 5)(x + 5)(x - 7)(x + 7) = (x^2 - 25)(x^2 - 49) = x^4 - 74x^2 + 1225$$

Portanto, b = -74 e c = 1225.

Solução alternativa - item (c)

(1) As raízes comuns são 1 e 5. Neste caso tem-se que

Resolvendo o sistema, segue que 624 + 24b = 0, logo b = -26 e daí c = 25.

(2) As raízes comuns são 1 e -7. Neste caso tem-se que

$$\begin{cases}
1 + b + c = 0 \\
7^4 + 7^2b + c = 0
\end{cases}$$

Resolvendo o sistema, segue que 2400+48b=0, logo b=-50 e daí c=49.

(3) As raízes comuns são 5 e $-7.\,$ Neste caso tem-se que

$$\begin{cases} 5^4 + 5^2b + c = 0 \\ 7^4 + 7^2b + c = 0 \end{cases}$$

Resolvendo o sistema, segue que (2401 - 625) + (49 - 25)b = 0, logo b = -74 e daí c = 1225.

Solução Alternativa – item (c)

- (1) As raízes comuns são 1 e 5. Neste caso tem-se que 1 e 25 são raízes da equação $y^2 + by + c = 0$, ou seja, b = -26 e c = 25.
- (2) As raízes comuns são 1 e -7. Assim tem-se que 1 e 49 são raízes da equação $y^2 + by + c = 0$, ou seja, b = -50 e c = 49.
- (3) As raízes comuns são 5 e -7. Logo tem-se que 25 e 49 são raízes da equação $y^2 + by + c = 0$, ou seja, b = -74 e c = 1225.

- (a) Determinar as três raízes. [0,25]
- (b) Provar o resultado. [0,25]
- (c) Escrever as três possibilidades para as raízes da primeira equação. [0,25]
 - Determinar os valores de b e c. [0,5]

(a) Consideremos o seguinte sistema de congruências lineares

$$\begin{cases} x \equiv a_1 \mod m_1 \\ x \equiv a_2 \mod m_2 \\ x \equiv a_3 \mod m_3 \end{cases}$$

onde $a_i \in \mathbb{Z}, m_i \in \mathbb{N}$ e $(m_i, m_j) = 1$ para $i \neq j$ (i, j = 1, 2, 3).

Tomando-se $M=m_1\cdot m_2\cdot m_3=m_1\cdot M_1=m_2\cdot M_2=m_3\cdot M_3$, tem-se que $(M_1,m_1)=(M_2,m_2)=(M_3,m_3)=1$, logo existe um inteiro b_i tal que $M_i\cdot b_i\equiv 1 \bmod m_i$, para cada i=1,2,3.

Com estas notações, prove que o número inteiro $x = \sum_{i=1}^{3} a_i b_i M_i$ é uma solução para o sistema acima.

(b) Determine a solução geral do seguinte sistema

$$\begin{cases} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \\ x \equiv 6 \mod 7. \end{cases}$$

Solução

(a) Com as notações dadas tem-se que

$$M_1 = m_2 m_3, M_2 = m_1 m_3, M_3 = m_1 m_2$$

 $M_1b_1 \equiv 1 \mod m_1, M_2b_2 \equiv 1 \mod m_2, M_3b_3 \equiv 1 \mod m_3$

Assim,

$$x = \sum_{i=1}^{3} a_i b_i M_i = a_1 b_1 M_1 + a_2 b_2 M_2 + a_3 b_3 M_3 \equiv a_1 b_1 M_1 \equiv a_1 \mod m_1$$

$$x = \sum_{i=1}^{3} a_i b_i M_i = a_1 b_1 M_1 + a_2 b_2 M_2 + a_3 b_3 M_3 \equiv a_2 b_2 M_2 \equiv a_2 \mod m_2$$

$$x = \sum_{i=1}^{3} a_i b_i M_i = a_1 b_1 M_1 + a_2 b_2 M_2 + a_3 b_3 M_3 \equiv a_3 b_3 M_3 \equiv a_3 \mod m_3$$

(b) Tem-se que

$$M = 3 \cdot 5 \cdot 7, \ M_1 = 5 \cdot 7, \ M_2 = 3 \cdot 7, \ M_3 = 3 \cdot 5$$

$$\begin{cases} M_1b_1 &=& 35b_1 \equiv 1 \mod 3 \\ M_2b_2 &=& 21b_2 \equiv 1 \mod 5 \\ M_3b_3 &=& 15b_3 \equiv 1 \mod 7 \end{cases}$$

$$\begin{cases} 2b_1 \equiv 1 \mod 3 \\ b_2 \equiv 1 \mod 5 \\ b_3 \equiv 1 \mod 7 \end{cases}$$

Logo, podemos considerar $b_1=2, b_2=1, b_3=1$ e $x=2\cdot 2\cdot 35+3\cdot 21+6\cdot 15=293$ é uma solução particular.

Portanto, a solução geral é dada por x = 293 + 105t, com $t \in \mathbb{Z}$.

- (a) Provar o resultado. [0,5]
- (b) Determinar uma solução particular. [0,5]
 - Escrever a solução geral. [0,25]

(a) Sejam x e y números reais.

Prove que $\sqrt{x^2 + y^2} \geqslant \frac{|x + y|}{\sqrt{2}}$ e que a igualdade é verificada se, e somente se, x = y.

(b) Sejam $a \in b$ reais tais que a + b = 1.

Determine os valores de a e b tais que $\sqrt{(a-9)^2+(b-13)^2}$ tem o menor valor possível.

Solução

(a) As seguintes desigualdades são todas equivalentes:

$$\sqrt{x^2 + y^2} \geqslant \frac{|x + y|}{\sqrt{2}} \iff$$

$$\sqrt{2}\sqrt{x^2 + y^2} \geqslant |x + y| \iff$$

$$2(x^2 + y^2) \geqslant |x + y|^2 \iff$$

$$2x^2 + 2y^2 \geqslant x^2 + 2xy + y^2 \iff$$

$$x^2 - 2xy + y^2 \geqslant 0 \iff$$

$$(x - y)^2 \geqslant 0.$$

Como a última é sempre satisfeita, quaisquer que sejam x e y reais, a primeira é verdadeira. Além disso,

$$\sqrt{x^2 + y^2} = \frac{|x + y|}{\sqrt{2}} \iff (x - y)^2 = 0 \iff x = y.$$

(b) Sejam a, b tais que a + b = 1. Pelo item anterior, com x = a - 9 e y = b - 13,

$$\sqrt{(a-9)^2 + (b-13)^2} \geqslant \frac{|(a-9) + (b-13)|}{\sqrt{2}} = \frac{|a+b-22|}{\sqrt{2}} = \frac{21}{\sqrt{2}}$$

Ainda pelo item anterior, sabemos que há igualdade se, e somente se, a-9=b-13, ou seja, a-b=-4. Daí,

$$\begin{cases} a+b=1 \\ a-b=-4 \end{cases} \implies a=-\frac{3}{2}, \quad b=\frac{5}{2}.$$

Assim, para estes valores de a e b, a expressão atinge seu valor mínimo.

- (a) Provar a designaldade. [0,25]
 - Provar a igualdade. [0,25]
- (b) Mostrar que possui mínimo ou calcular o valor mínimo. [0,5]
 - Determinar os valores de a e b. [0,25]

Nos dois casos abaixo, demonstre a conhecida relação métrica $\overline{PA} \cdot \overline{PB} = \overline{PC} \cdot \overline{PD}$, também chamada de "potência de ponto no círculo":

- (a) P exterior ao círculo (Figura 1).
- (b) P interior ao círculo (Figura 2).

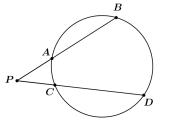


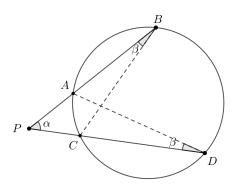
Figura 1



Figura 2

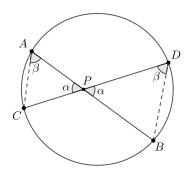
Solução

(a) Traçando os segmentos AD e BC, conforme a figura abaixo, obtemos os triângulos APD e CPB, os quais são semelhantes pelo caso de semelhança AA (ângulo-ângulo), já que o ângulo de medida α é comum e os ângulos de medida β são congruentes, já que ambos são ângulos inscritos na circunferência e subtendem o mesmo arco AC.



Logo, $\frac{\overline{PA}}{\overline{PC}} = \frac{\overline{PD}}{\overline{PB}}$ e assim $\overline{PA} \cdot \overline{PB} = \overline{PC} \cdot \overline{PD}$, como queríamos demonstrar.

(b) Traçando os segmentos AC e BD, conforme a figura abaixo, obtemos os triângulos APC e DPB, os quais são semelhantes pelo caso de semelhança AA (ângulo-ângulo), já que os ângulos de medida α são congruentes, já que são opostos pelo vértice, e os ângulos de medida β são congruentes, já que ambos são ângulos inscritos na circunferência e subtendem o mesmo arco BC.



$$\frac{\overline{PA}}{\overline{PD}} = \frac{\overline{PC}}{\overline{PB}}$$

e, portanto,

$$\overline{PA} \cdot \overline{PB} = \overline{PC} \cdot \overline{PD}$$
,

como queríamos demonstrar.

Pauta de Correção:

- (a) Provar que os triângulos APD e CPB são semelhantes pelo caso AA. [0,5]
 - Utilizar a semelhança para provar a relação métrica. [0,25]
- (b) Provar que os triângulos APC e DPB são semelhantes pelo caso AA. [0,25]
 - Utilizar a semelhança para provar a relação métrica. [0,25]

Questão 05 [1,25]

Prove que uma função do tipo exponencial fica determinada quando se conhecem dois de seus valores. Mais precisamente, se $f(x) = b \cdot a^x$ e $F(x) = B \cdot A^x$ são tais que $f(x_1) = F(x_1)$ e $f(x_2) = F(x_2)$ com $x_1 \neq x_2$, então a = A e b = B (a e A são números reais positivos diferentes de 1, b e B são números reais não nulos).

Solução

Do fato de que $f(x_1) = F(x_1)$ decorre que $b \cdot a^{x_1} = B \cdot A^{x_1}$. Como a não é nulo, nenhuma potência de a será nula também. Assim, podemos dividir por a^{x_1} a última equação, obtendo

$$b = B \cdot \frac{A^{x_1}}{a^{x_1}}.$$

Por outro lado, $f(x_2) = F(x_2)$ implica que $b \cdot a^{x_2} = B \cdot A^{x_2}$.

Substituindo, nesta última equação, o valor encontrado para b, temos

$$B \cdot \frac{A^{x_1}}{a^{x_1}} \cdot a^{x_2} = B \cdot A^{x_2}.$$

Dividindo a equação anterior por $B \cdot a^{x_2}$ (que não é nulo, já que B e a não são nulos) obtemos

$$\frac{A^{x_1}}{a^{x_1}} = \frac{A^{x_2}}{a^{x_2}}$$

$$\left(\frac{A}{a}\right)^{x_1} = \left(\frac{A}{a}\right)^{x_2}.$$

Como $x_1 \neq x_2$ e $\frac{A}{a} > 0$ (pois ambos, $a \in A$, são maiores que zero), então a última igualdade implica em $\frac{A}{a} = 1$, ou seja, A = a.

Substituindo A por a em $b \cdot a^{x_1} = B \cdot A^{x_1}$ ficamos com

$$b \cdot a^{x_1} = B \cdot a^{x_1}.$$

Dividindo esta última equação pelo número real não nulo a^{x_1} chegamos ao resultado b = B, concluindo assim a prova.

- Deduzir a equação $\left(\frac{A}{a}\right)^{x_1} = \left(\frac{A}{a}\right)^{x_2}$. [0,5]
- Argumentar que $\frac{A}{a} = 1$ considerando que $x_1 \neq x_2$ e $\frac{A}{a} > 0$. [0,5]
- $\bullet\,$ Concluir que A=ae, a partir daí, que B=b. [0,25]

Consideremos o número de Fermat $F_n = 2^{(2^n)} + 1$, onde n é um número natural.

- (a) Mostre que se m < n, então F_m divide $F_n 2$.
- (b) Mostre que se $m \neq n$, então F_m e F_n são primos entre si.

Solução

(a) Suponha m < n. Considere r = n - m > 0, logo n = m + r.

Segue que
$$F_n = 2^{(2^n)} + 1 = 2^{(2^{r+m})} + 1 = 2^{(2^r 2^m)} + 1 = (2^{2^m})^{2^r} + 1$$
e daí

$$F_n - 2 = (2^{2^m})^{2^r} - 1$$

onde 2^r é um número par.

Portanto,
$$F_m = 2^{(2^m)} + 1$$
 divide $(2^{(2^m)})^{2^r} - 1 = F_n - 2$.

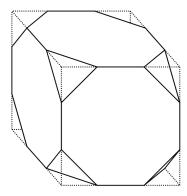
(b) Suponha $m \neq n$ e, sem perda de generalidade, m < n.

Tem-se que $(F_m, F_n) = (F_m, F_n - 2 + 2)$. Como F_m divide $F_n - 2$, segue que $F_n - 2 = kF_m$, com k inteiro.

Portanto,
$$(F_m, F_n) = (F_m, F_n - 2 + 2) = (F_m, kF_m + 2) = (F_m, 2) = (2^{(2^m)} + 1, 2) = 1.$$

- (a) Escrever $F_n = (2^{2^m})^{2^r} + 1$. [0,25]
 - Escrever que $F_n 2 = (2^{2^m})^{2^r} 1$ e concluir que F_m divide $F_n 2$. [0,5]
- (b) Escrever $(F_m, F_n) = (F_m, F_n 2 + 2) = (F_m, kF_m + 2).[0,25]$
 - Concluir que $(F_m, F_n) = (F_m, 2) = (2^{(2^m)} + 1, 2) = 1$. [0,25]

Um sólido é produzido a partir de um cubo de madeira com 2cm de aresta, retirando-se um tetraedro a partir de cada vértice do cubo, como mostrado na figura abaixo. Seis faces do sólido resultante são octógonos regulares, e as outras oito faces são triângulos equiláteros.

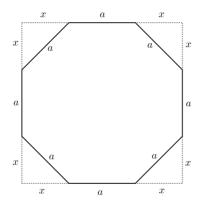


Calcule o volume do sólido.

Solução

Na figura abaixo temos a vista frontal do sólido. Nela, as partes pontilhadas correspondem aos cantos que foram retirados.

Chamando de a a medida dos lados do octógono regular e de x a medida das arestas laterais dos tetraedros que foram retirados, concluímos que a + 2x = 2, já que a aresta do cubo mede 2 cm.



Considerando os triângulos retângulos isósceles de hipotenusa a e catetos x que aparecem na figura, concluímos, a partir do teorema de Pitágoras, que $a^2=2x^2$, logo $a=x\sqrt{2}$.

Como a+2x=2,temos então $x\sqrt{2}+2x=2,$ logo $x(2+\sqrt{2})=2$ e então

$$x = \frac{2}{2 + \sqrt{2}} = \frac{2(2 - \sqrt{2})}{(2 + \sqrt{2})(2 - \sqrt{2})} = \frac{4 - 2\sqrt{2}}{2} = 2 - \sqrt{2}.$$

Da forma como foram obtidos, os tetraedros têm como faces três triângulos retângulos isósceles de catetos medindo x e hipotenusa medindo a e um triângulo equilátero de medida a. Se considerarmos um dos triângulos retângulos isósceles como base, a área da base do tetraedro será dada por $\frac{x^2}{2}$ e a altura por x. Portanto, o volume deste tetraedro é $\frac{x^3}{6}$.

Com isso, o volume do sólido, após a retirada dos 8 tetraedros será

$$V = 2^{3} - 8 \cdot \frac{x^{3}}{6}$$

$$= 8 - \frac{4 \cdot (2 - \sqrt{2})^{3}}{3}$$

$$= 8 - \frac{4 \cdot (2^{3} - 3 \cdot 2^{2} \cdot \sqrt{2} + 3 \cdot 2 \cdot (\sqrt{2})^{2} - (\sqrt{2})^{3})}{3}$$

$$= 8 - \frac{4 \cdot (8 - 12\sqrt{2} + 12 - 2\sqrt{2})}{3}$$

$$= 8 - \frac{4 \cdot (20 - 14\sqrt{2})}{3}$$

$$= 8 - \frac{80 - 56\sqrt{2}}{3}$$

$$= \frac{24 - (80 - 56\sqrt{2})}{3}$$

$$= \frac{56\sqrt{2} - 56}{3}$$

- \bullet Encontrar a relação entre x e o lado a do octógono dada pelo Teorema de Pitágoras. [0,5]
- Encontrar o valor de x. [0,25]
- Apresentar uma expressão correta para o volume de cada tetraedro $(x^3/6)$ ou, alternativamente, calcular corretamente esse volume. [0,25]
- Encontrar o volume do sólido. [0,25]

Um prêmio é oferecido a um jogador pelo lançamento de um dado não viciado, com as seguintes regras:

- Se o resultado for 1, o jogador ganha 1 ponto.
- Se o resultado for 2 ou 3, o jogador ganha 2 pontos.
- Se o resultado for 4, 5 ou 6, não obtém pontuação.
- Os pontos vão se somando a cada jogada.
- O prêmio é entregue assim que o jogador conseguir obter exatamente 3 pontos e o jogo é encerrado.
- (a) Determine a probabilidade de se ganhar o prêmio na segunda jogada.
- (b) Determine a probabilidade de se ganhar o prêmio apenas na terceira jogada.

Solução

- (a) Há duas maneiras de obter 3 pontos na segunda jogada:
 - fazer 1 ponto na primeira e 2 pontos na segunda jogada cuja probabilidade é $\frac{1}{6} \cdot \frac{2}{6} = \frac{2}{36} = \frac{1}{18}$
 - fazer 2 pontos na primeira e 1 ponto na segunda jogada cuja probabilidade é $\frac{2}{6} \cdot \frac{1}{6} = \frac{2}{36} = \frac{1}{18}$.

Logo a probabilidade de se ganhar o prêmio na segunda jogada é igual a $\frac{1}{18} + \frac{1}{18} = \frac{2}{18} = \frac{1}{9}$.

(b) Para facilitar a escrita considere a terna (a, b, c), onde a indica a pontuação na primeira jogada, b na segunda e c na terceira.

Há cinco maneiras de obter 3 pontos exatamente na terceira jogada:

- (0, 1, 2) cuja probabilidade é $\frac{3}{6} \cdot \frac{1}{6} \cdot \frac{2}{6} = \frac{6}{216}$.
- (0, 2, 1) cuja probabilidade é $\frac{3}{6} \cdot \frac{2}{6} \cdot \frac{1}{6} = \frac{6}{216}$.
- (1, 0, 2) cuja probabilidade é $\frac{1}{6} \cdot \frac{3}{6} \cdot \frac{2}{6} = \frac{6}{216}$.
- (2, 0, 1) cuja probabilidade é $\frac{2}{6} \cdot \frac{3}{6} \cdot \frac{1}{6} = \frac{6}{216}$.
- (1, 1, 1) cuja probabilidade é $\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{216}$.

Portanto a probabilidade de se ganhar o prêmio exatamente na terceira jogada é igual a $4 \cdot \frac{6}{216} + \frac{1}{216} = \frac{25}{216}$.

- (a) Determinar as duas probabilidades para se obter 3 pontos. [0,25]
 - Calcular a probabilidade para se obter 3 pontos na segunda jogada. [0,25]
- Determinar as cinco possibilidades para se obter 3 pontos exatamente na terceira jogada. [0.50]
 - Calcular a probabilidade para se obter 3 pontos exatamente na terceira jogada. [0,25]